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Abstract. A model is proposed for the separated high Reynolds number flow past a three-dimensional slender 
axisymmetric body. The current 'composite' model assumes that the separated region consists of both a region of 
constant pressure and a Prandtl-Batchelor region. Matched asymptotic expansions are employed to recover a 
nonlinear integro-differential equation for the shape of the separated region. Asymptotic solutions of this equation 
are obtained, and predictions for the pressure profile behind the body are given. 

1. Introduction 

Classical models for separated high Reynolds number flows in two dimensions come in at 
least two forms. First, the constant pressure Helmholtz-Kirchhoff model and second, the 
constant vorticity Prandt|-Batchelor model. These models are both very simple and elegant 
but have the important drawback that they show poor agreement with experiment. Recently 
O'Malley et al. (1991) proposed a physically more realistic composite model which combines 
the two classical ideas whilst retaining their simplicity and elegance. This model was shown 
to give good agreement with experiment. This is the motivation for the present study where 
the work is extended to the axisymmetric case. 

In the two-dimensional model mentioned above, the separated region was assumed to 
consist of a region of constant pressure immediately behind the obstacle, and, further 
downstream, a Prandtl-Batchelor region, where the vorticity was constant. In the axi- 
symmetric case we propose a similar structure for the separated region behind a blunt-based 
slender body, (see Fig. 1). Use must be made of the classical result, which indicates that, for 
an axisymmetric flow, the correct interpretation of a Prandtl-Batchelor region (a region in 
the flow bounded by closed streamlines) is that the vorticity is proportional to the radial 
distance r rather than constant. An example of such a flow in an O(1) geometry is the Hill's 
spherical vortex (Hill (1894)). 

The two-dimensional model of O'Malley et al. was justified by an appeal to experimental 
results. These experiments (e.g. Narayanan et al. (1974)), for high Reynolds number flow 
down a backward-facing step, clearly show a region of constant pressure immediately 
downstream of the step. The width of the region was the same order as the height of the step 
but the length was typically longer than the step height by a factor of ten. Hence a thin body 
approximation was proposed. For axisymmetric flows the experimental work is dominated by 
O(1) Mach number compressible flows or O(1) geometries. The former has obvious military 
applications, whilst the latter is at least in part due to experimental difficulties with the 
process of setting up slender axisymmetric flows and measuring their downstream pressure 
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Fig. 1. Definition sketch showing the separating stream surface, stagnant zone R,, Prandtl-Batchelor region R,2 
and equivalent afterbody. 

distributions. However, we can gain some insight from this work concerning the possible 
flow behaviour for an axisymmetric, slender, high Reynolds number, incompressible flow. 

The first point to note concerning the model presented below is the constant pressure, 
stagnant zone immediately downstream of the base of the slender obstacle. Such constant 
pressure cavities (Helmholtz-Kirchhoff models) are a common modelling assumption for 
separated flows (see, for example Levinson (1946) for the asymptotic behaviour of an infinite 
cavity far downstream) and are often observed in experimental results for two-dimensional 
flow down a step. For axisymmetric flows the reader is referred to Calvert (1967) and Presz 
& Pitkin (1974) for experimental pressure profiles. Although these experiments were 
conducted at O(1) subsonic Mach numbers or using O(1) geometries, the downstream 
pressure distribution shows qualitative agreement with incompressible two-dimensional 
flows. In Fig. 2 we have superimposed the axial pressure profile for flow past an inclined 
disc, taken from Calvert and the wall pressure profile for flow down a step, taken from 
O'Malley et al. The two profiles are not directly comparable, but the essential similarities 
may be easily observed. Of particular interest is the experimental work of Atli (1989) that 
considers axisymmetric, high Reynolds number flow at low Mach number. Although the 
cavity in these experiments is not slender, many of the features of the current model are 
present, including the recirculating region. 

The second point to note is the rotational region of flow behind the obstacle. Again, this is 
difficult to measure experimentally and our justification this time comes from the numerical 
work of Fornberg (1988). Here it is found that for large Reynolds numbers the wake behind 
a sphere approaches the limit of a Hill's spherical vortex. We conjecture therefore that for a 
flow past a slender axisymmetric body the equivalent limit would be a Prandtl-Batcbelor 
region with large aspect ratio. 
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Fig. 2. Axial pressure profile for flow past an inclined disk (Calvert (1967) ×) and wall pressure profile for flow 
down a step (O'Malley et al. (1991) O). (Arbitrary Units.) 

Finally, we refer to work by Cumberbatch & Wu (1961), Sadovskii (1971) and Bliss 
(1982), all of  which have some of the characteristics of our proposed model. 

Cumberbatch & Wu consider the separated flow past a slender, triangular plate hydrofoil. 
Within the separated region the flow is stagnant and the pressure is uniform. The hydrofoil is 
at a small angle of attack and separation occurs at its leading edge. The flow is not 
axisymmetric and they close the cavity above by adopting a Riabouchinsky model. Down- 
stream of the hydrofoil the cavity is assumed to have only a small effect on the flow near the 
hydrofoil.  This allows them to calculate the lift and drag on the plate. Our approach extends 
their work in two ways. First, we have a physically more realistic model for the cavity and, 
second, we allow the cavity to play the major role in determining the flow and hence the 
pressure on the body. 

Sadovskii considers an isolated rotational flow in two dimensions, symmetric about an 
axis. In this model there is a separating streamline within which the vorticity is constant and 
outside of which the vorticity is zero. A family of solutions is found depending upon the 
jump in Bernoulli constant across the separating streamline. When this constant is non-zero,  
the region of constant vorticity has a cusped closure. Although this work has not been 
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extended to the axisymmetric case (the existence of axisymmetric closed Prandt l -Batchelor  
regions is still an important open question) we conjecture that similar rotational flows are 
possible. When there is no jump in the Bernoulli constant the flow would correspond to that 
of a Hill's spherical vortex. However ,  with a jump we expect a cusped closure, so that the 
pressure along the separating streamline remains continuous. 

Bliss considers the flow through a single slot of finite length in a wall separating a uniform 
free stream and a quiescent fluid at a different static pressure, his study being motivated by 
the need to understand the aerodynamic behaviour of slots which are used in the walls of 
transonic wind tunnels. Slender body theory and matched asymptotic expansions are used to 
produce an integro-differential equation for the unknown position of the free surface. When 
the displacement of the free surface is small compared to the slot width, a linear integro- 
differential equation describes the free surface shape and may be solved analytically for 
certain slot planforms. This model differs from ours in that the free surface is never required 
to reattach and the pressure in the slot is u n i f o r m -  there is no recirculating zone. 

In section 2 we present our model and derive a nonlinear integro-differential equation for 
the cavity cross-sectional area using asymptotic analysis based upon the slenderness parame- 
ter. In section 3 a comparison is made with the properties of the two-dimensional equation. 
This is followed by the derivation of some consistency conditions for the equation and some 
discussion concerning the closure of the cavity. In section 4 we consider a further asymptotic 
limit for which some analytic solutions are possible. Conclusions are drawn in section 5 and 
scope for further work is discussed. The numerical solution and further analysis is contained 
in a companion paper (Fitt & Wilmott (1992)). 

2. The axisymmetric cavity 

We consider steady, laminar, inviscid, incompressible flow past an axisymmetric cavity with 
axes r, 0 and x as shown in Fig. 1. We denote unit vectors in the x, r and 0 directions by e x, 
e r and e 0 respectively. Far away from the cavity the undisturbed flow is assumed to have 
constant speed U~ in the positive x-direction, the cavity has length a L  (where a is an order  
(1) constant to be determined; the reason for this definition of the length will become 
apparent  later) and typical width H 1. We assume that the cavity has been produced by an 
obstruction in the flow which may be a finite axisymmetric solid body or may also be thought 
of as being a semi-infinite obstruction (for example a cylinder) which stretches along the 
negative x-axis from x = 0 to x = -o~. 

The flow outside the cavity 'sees' two types of boundary,  that is, the fixed boundary of the 
obstacle, and the free boundary of the cavity, whose position is not known. Here ,  we 
consider the simplest case where point of separation from the obstacle is known a priori; 
namely a semi-infinite cylinder of radius H 1 whose axis is aligned with the flow, so that 
separation is from the rear of the cylinder. 

We shall permit the cavity to join onto a cylindrical Riabouchinsky type of afterbody (see 
Fig. 1). There  are two reasons for this. First, it will be necessary to reattach to a solid body 
to ensure cusped closure of the cavity and hence continuity of pressure. Second, it was found 
that such an imaginary afterbody produced better  agreement with experiment in the case of 
two-dimensional flow down a step. In this case the afterbody was interpreted as a model for 
the growing shear layer downstream of the cavity. Such a wake region is expected to exist in 
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an axisymmetric flow also; following O'Malley et al. we shall call this the equivalent 
afterbody. These two points will be discussed more fully in section 3. 

Assuming that outside the cavity the flow is irrotational with velocity q = ue x + oe, and 
velocity potential ~ ,  the axisymmetry allows us to assume that qb is a function of x and r 
alone. Denoting the boundary of the cavity by r = R(x), and assuming that R ( 0 ) =  H 1, 
R ( a L )  = / / 2 ,  the radius of the afterbody, the full (dimensional) problem for the flow outside 
the obstruction/cavity combination is 

[ A~ = 0 
• ~ U~x 
(q .V)[r  - R(x)] = 0 
1 iV( IDI2  1 r r 2  ..}_ / 
~1 I = ~ ( P ~ -  Pcav)/P 

as Ixl-   
on r = R(x) 
on r = R(x) .  

Here  p~ and p denote  the pressure in the undisturbed free stream and the density of the fluid 
respectively, and Pcav is the pressure on the boundary r = R(x) which in general will be a 
function of x. The boundary conditions are of a standard type for elliptic operators;  the 
presence of both a kinematic and a dynamic condition on r = R(x) reflects the fact that the 
position of the boundary is unknown and must be determined as part of the solution. (Of  
course for x < 0 and x > ~ L  we regard the shape of the body as known.) 

2.1. The slender cavity 

Having formulated the problem for an arbitrary cavity behind a cylinder, we now focus 
at tention on the case where the cavity is slender so that H1/L ~ 1. 

Outside the cavity we first subtract off the free stream flow and non-dimensionalize by 
setting 

x =  L2 , r=  L? and ~ = U ~ x + e 2 L U = d p .  

Here  the hats denote  non-dimensional variables outside the cavity and the quantity e ~ 1 is a 
small parameter  of algebraic order  HI/L.  (The reason for not immediately defining e to be 
equal to H1/L will become apparent later.) It is also worth mentioning at this point that 
although the disturbance potential has been assumed to be of O(e2), the formulation of the 
problem within the cavity will inevitably lead to the appearance of terms involving log(e), so 
all the unknown quantities will implicitly be assumed to be functions of ~, ~ and log(e). 

We shall employ the technique of matched asymptotic expansions to examine the flow, and 
so we define an outer  region which is composed of points at an O(1) distance away from the 
cavity and an inner region where distances from the cavity are of the order  of its typical 
radius. 

The outer solution 
The velocity potential in the outer region is most easily represented by a distribution of 
sources along the axis of the cavity so that (dropping the hats) we have 

f o  C(~)  d~ (1) 
= ~/(x~- ~ - ~ -  r 2 '  

where the function C is to be determined. If the obstacle had a cross-section of varying area 
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then we could also introduce a distribution of sources along the negative x-axis. We do not 
consider this case here,  however. 

The inner solution 
In the inner region we rescale the radial coordinate by writing r = er*. Now the inner 
velocity potential,  th* say, must satisfy the radial Laplacian 

, 1 
+ 7 4,r* =0  

to leading order  together with the leading term in the Bernoulli pressure condition 

1 *2 P= - Pcav on r* = R* 
p 2tJ 2 ' 

where R =  eLR* and the kinematic condition ~br* = R * '  where ' = d / d x * .  Clearly the 
solution for ~b* is 

qb* = A(x) log r* + B(x), 

so that A and B must satisfy 

A=R *R* '  

and 

A' log R* + B'  + 
1 A 2 _ po~ - Pcav 

2 2 2 R .2 pe  U ~  

The matching condition 
Writing (1) in inner variables (r = er*) and expanding for small e, we find that 

4x(a  x)) 
= - 2 C l o g  r* + C l o g  -~- 

E 

Therefore  

C = - 2 A ,  

(to balance the log r* terms) and 

B= Clog( 4X(azX)  ) + f ° C ( ~ ) -  C(x)d~ 

1"~ C(~) - C(x) d~ + 
J o Ix - El 

(2) 

Note  that the source strength C is proportional to the rate of change of the cross-sectional 

area of the cavity. 
The model is now fully posed as an integro-differential equation for the cavity profile, 

provided that we can model the pressure within the cavity, Pcav" 
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The interior problem 
We must now examine the flow inside the cavity. In the introduction we have discussed the 
experimental  evidence concerning the flow behaviour in the wake of a slender obstacle. This 
evidence is s trengthened by experimental work on equivalent two-dimensional separated 
flows and we thus present here an axisymmetric model analogous to that of O'Malley et al. 
The  model is inviscid, with the effects of viscosity assumed to be confined to narrow shear 
layers (for example, emanating from the rim of the base of the obstacle). It is possible that 
the flow contains many eddies, perhaps of ever decreasing size and alternating direction as 
the base of the obstacle is approached and /o r  further downstream. Our present model may 
thus be thought of as the simplest possible and, since it cannot be expected to capture the 
full structure of the real flow, we may interpret our vorticity as a spatial and temporal  
average of the actual vorticity. 

The flow within the cavity ( r * <  R*) is modelled as follows. In region R~I (see figure 1), 
which is that part of the cavity immediately downstream of the base of the obstacle, we 
assume that the flow is stagnant. This is the classical Helmhol tz-Kirchhoff  model having 
Pcav= Pc = constant. For this model it is found to be impossible to enforce cusped closure 
(for a finite cavity) at reattachment,  and the pressure is therefore discontinuous. The 
Helmhol tz -Ki rchhof f  cavity is thus often taken to be infinite in length (with Pc representing 
the pressure at infinity in the free stream) or to reattach to an image body at a finite distance 
downstream (the Riabouchinsky model).  Here  we shall adopt an alternative approach. We 
restrict the stagnant region to the interval 0 ~< x ~< 1 and, for 1 ~< x <~ a we assume that the 
remainder  of the cavity is a Prandt l -Batchelor  region of rotational flow. In this region 
(labelled Ri2 in Fig. 1), the vorticity is essentially known (but see below for a discussion of 
axisymmetric flows bounded by closed streamlines). We have seen in the introduction how 
this model is suggested by the numerical work of Fornberg. Note that in the current model 
the cavity aspect ratio is 1/e and the cavity is thus slender. For this reason the details of how 
the regions Ril and R n are joined at their interface need not concern us, since we expect this 
to occur over a distance of O(e) which is small compared to the length of the cavity. We shall 
be content  to insist upon the continuity of pressure and cavity area from x = 1 -  to x = 1+. 

If we now define e via 

2 P ~  - -  P ~  
E - -  1 2 ' ~pU~ 

we find that the right hand side of (2) becomes simply 1/2. It is worth remarking that the 
problem could equally well have been set up by defining e = H1/L, but in an experiment the 
pressure coefficient inside the stagnant region immediately downstream of the beginning of 
the cavity would be the more natural quantity to measure,  rather than L whose experimental  
determinat ion would be rather hard. The quantity H 1/L is still, of course, of algebraic order  
/?. 

Turning now to the region Ri2 , we employ the same scalings as in Ril, except for the fact 
that now the flow is no longer irrotational and there is no velocity potential. Accordingly we 
define a stream function ~ such that 

1 1 u=-;-;4,. ,  v= / - ;~  

so that the continuity equation 
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1 
u x + ~-2 (r* D)r. ~- 0 

is identically satisfied. Having non-dimensionalized ~ by setting 

qJ = e3g~L 2t) * , 

and further scaling 

2 

so that pressure variations of the correct order of magnitude are produced, we observe that a 
classical result of Batchelor (1955) concerning the distribution of vorticity in regions of flow 
confined by closed streamlines, relating in particular to Hill's spherical vortex, implies that 
the vorticity in region Ri2 must be proportional to r*. Accordingly we set the 0-component 
of vorticity equal to -/3r* and non-dimensionalize by writing/3 = ( 8 - 1 U J L 2 ) / 3  * so that 

1 qj.,] =/3*r* 
Or* 

to lowest order, which may easily be solved to yield 

~O*- r* 2/3" 
8 [r*2 - -  R*2] 

and this solution may now be used to match across the dividing streamline and close the 
problem. The pressure on the boundary of Ri2 satisfies 

1 2 1 2 
P i 2  + -2 Pqi2 + h = p= + ~ p U~ , 

where the constant h has been introduced to reflect the fact that owing to the presence of the 
infinitesimal shear layer between the free stream and the rotational region there will be a 
jump in the Bernoulli constant across r* = R*(x) .  Using the stream function for the flow in 
Ri2 we find that the non-dimensional pressure coefficient is given by 

- h 62/3" 2R .4 
P=uP2 = - 1  + ~T15,,2 + C p -  l p  ~ ~ p U ~  16 

Defining a non-dimensional Bernoulli jump via 

pu~ 
h = T [ l + e 2 h  *] 

we find that 

Cp = e2h * + e2fl*ZR*4/16. 

The matching may finally be completed by eliminating A and B and using the relevant 
pressure coefficients in both regions to ensure continuity of pressure across the cavity 
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2 1 
d---xd [1 R,R,,iog(4x(e__ x))--2 fo R*(~)R*'(~)-R*(x)R*'(X)[x___~i ds c] 

1 (R'R*')' R* / 1 / 2  (0~<x~<l)  
- 2 R * ' 2 -  log +[h,+lS,2R,4/16 ( l~<x~<a) . (3) 

We may also take the opportunity to simplify the governing integral equation further by 
working in terms of the cavity area rather than the radius. Writing 

T(x)-- ~-R*2(x) , 

and dropping the stars for convenience, the equation becomes 

1 d---xd [ T'(x)(log(e/2) - log~/x(a - x)) - ~ fo T'( ~) -I~___ ~T'(x) d~] 

T"(x) ( T )  {~- (0.~< x ~< 1) 
+-----~--log = 27rh+f12T2(x)/8rr ( l~<x<~a) .  

T'2(x) 
+ - -  

4T(x) 

(4) 

We now consider boundary conditions and continuity requirements. First, an obvious 
requirement is that the pressure should be continuous at x = 1. This implies that 

1 f12T2(1) 
h -  

2 16rr 2 

As far as boundary conditions are concerned, we have 

T ( 0 ) -  2L2 , T(a) : e2L2' 

whilst for smooth separation and reattachment we also require 

T'(O) = T'(a) = O. 

3. Some comments on the integro-differential equation 

Before dealing with some of the properties of (4), it is worth noting that there are a number 
of different ways of writing the equation using various conditions at the boundaries. Firstly, 
if the integral is split into two portions, then integrated by parts and differentiated, we find 
that the equation may be written 

21 f0 ~ T"( s c)[~__ ~ 1 -  T"(x)ds c + ~T"(x)log[ 4 ~ ' - ~  ~e2T(x) x)]  

+ T ' i ( x ) - { ;  t3~ ( 0 ~ x ~ l )  
4r(x) - ~ [ r2( l )  - r2(x)] ( l~<x~<a) (5) 
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with 

~'H~ zrH~ 
r ( o ) -  eZL2 , r ( a ) -  E2L2 , T'(O) = T'(a) = O. 

We shall show shortly that if T ( a ) ~ 0  then T"(0)= T"(a)= 0, in which case another 
integration by parts may then be performed to allow the equation to be rewritten as 

2 

+ m  

T"(x), [- ~2:r(x) ] 
T"'(~)sgn(~-x)logl~-x I d~ + ~ ,ogL~--~-_ ] 

T'Z(x) _ { ¢r (0 ~< x ~< 1) 
4T(x) 7 r -  s~-~-[T2(1) - TZ(x)] ( l~<x~<a)  (6) 

with 

T(0) - e2L2 ' T(a) - e2L2 , T'(O) = T'(a) = O. 

Each of these forms of the equation has its advantages, but (5) is probably the easiest to 
manipulate. 

3.1. Comparison with the model of O'Malley et al. 

We recall that the analogous equation for the free boundary in the two-dimensional problem 
(see O'Malley et al. (1991)) is 

fo 1 S'(~) ds~= 
7 ~ -- ~ ($2(1) - S2(x)) (1 ~ x ~< a)  ' (7) 

where S(x) represents the height of the separating streamline. (This may be thought of as an 
extension of the model of Childress (1966) who assumed the cavity to be composed of a 
single region in which the vorticity was constant.) The structure of (5) and (7) are very 
similar, but differ in two main respects; first, the nonlinear term in Bernoulli's equation only 
makes an appearance in the three-dimensional model (giving rise to the term T'2/4T) and, 
second, the slenderness parameter e appears explicitly in the log e term. The latter is very 
common in integral equations from Laplace's equation in an axisymmetric geometry. At  first 
glance it might appear that the integral equation (5) possesses one more derivative than (7). 
That this is not actually the case may be seen by integrating (7) by parts. Now (7) takes the 
form 

lzr S " ( ~ ) l ° g l x - ~ l d ¢ =  - ~ ( S 2 ( 1 ) - S 2 ( x ) ) y  ( l<~x~<a)  ' 

The two forms (5) and (8) are only now directly comparable since the two kernels each 
correspond to the potential for a source evaluated on the x-axis. 

3.2. Consistency conditions for the equation 

It was found by Childress using a force balance argument for the two-dimensional problem 
that the parameters in (7) are not all independent. This was also shown by O'Malley et al. 
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using a simpler argument. A similar analysis is applicable in the present case. A succinct 
result may be derived by multiplying the equation (5) through by T'(x) and integrating from 
0 to a with respect to x. This allows the whole of the right hand side and much of the left 
hand side of the equation to be integrated immediately, leaving 

12 ~;[T"(x)T'(x)log(x(,~ - x)) + T'(x)(i  ° T"(~:) - i ,  x]T"(x) d~ ) ]  dx 

/32 T3(og) 2T2(1)] 
= r r ( T ( c 0 -  T ( 0 ) ) -  ~ (T2(1)T(a)  3 3 / "  

An integration by parts shows that the left hand side is identically zero, so that 

/32 = 8 ~ 2 ( r ( ~ ) -  7"(o)) 
T2(1) T(a) - ~ T3(a)  - ~ T3(1) " (9) 

This result effectively relates the vortex strength to the height of the obstacle and the length 
of the constant pressure region. Similar relationships between parameters can be found in 
many integral equations of the above form (or its two-dimensional analogue); see, for 
example O'Malley et al. 

As in the two-dimensional case, it is also possible to derive a second consistency condition. 
First, we note that the integral term in the equation (5) vanishes identically when integrated 
with respect to x from 0 to a. This gives 

a E2 /32 
~, T"(I) I l log T(x)+ log( )dx l= ~ra - £~ ~ [T2(X) - TZ(x)]dx (10) 

4zrx(a - x) 

The equivalent result in the two-dimensional case (O'Malley et al.) was found to be useful in 
the numerical solution of the corresponding integral equation. Of course, any number of 
consistency conditions may be found by multiplying the equation by suitable functions and 
integrating. Equation (9) is particularly useful since it effectively eliminates a parameter 
(T(1) or/3,  say). (In practice, T ' ( 0 ) =  0 together with (9) ensure that T'(a) = 0.) 

3.3. Cavity closure 

We shall now briefly examine the behaviour of the separating streamline in the neighbour- 
hood of x = 0 and x = a and then discuss the consequences. 

In order to examine this local behaviour we need to determine which of the terms in (4) 
play an important role near singularities. Consider the neighbourhood of x = 0. Clearly the 
terms ~ ( T '  log(e/2)) and T" log(T/~-) are always small compared to ~ ( -  T' log x). We may 
also neglect the term T'Z/4T since T(0) is finite and T'(0) = 0. We may explicitly perform the 
differentiation in (4) with respect to x (taking care with the differentiation of the integral 
term). Then, after writing T'(0) = 0 and T'(a) = 0 we find that we must balance, near x = 0, 
two out of the three terms in 

f :  f (  ~ ) - f (x)  dE ]~--~[ + f(x) logx= - 2 ~ - ,  (11) 

where f(x) = T"(x). 
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We can eliminate only the balance between the last two terms. For suppose that locally 
f(x) -- - 2  ~-/log(x), then substitution of such a local behaviour  into the integral, terms in (11) 
gives a function with local behaviour  l o g ( - l o g  x), which is singular at x = 0. Both the other  
two combinat ions of two out of the three terms are permitted.  First, a balance between the 
first and last terms will be possible provided f(x) log(x) ~ 0 as x ~ 0, allowing for example 
f(x) ~ ax ~, /x > 0. Unfortunately,  neither a nor /x may be determined explicitly since the 
balance of terms is global rather than local. The second possibility is a balance between the 
integral te rm and the log term in (11) in such a way that both are individually infinite at x = 0 
but cancel each other  out. In this case we find that 

f(x) ~ a ( - l o g  x) - ~/2 

where again a is determined via a global problem. Thus we conclude that in either case 
T"(O) = 0. The argument  carries over  directly to the neighbourhood of x = a provided that 
T(a) ~ 0 and again we find that T"(a) = 0. In the special case T(a)  = 0, the term T"(x) log T 
in (4) becomes important  and we cannot rule out the possibility that T"(a) is infinite. 

The  importance  of the second derivative of T(x) may be appreciated by considering the 
pressure distribution. For x < 0 and x > a the pressure acting on the obstacle or af terbody is 
given by 

1 d F T'(~)d~ 
P--  2 Jo 

The  pressure will thus be infinite at an end of the cavity where T"(x) ~ O. Fur thermore ,  since 
the cavity radius is ~/T(x), a cavity having T(a)= 0 will only be cusped if T"(a)= O. 

Clearly, we know that the pressure will remain finite if we insist on an af terbody so that 
T(a) ~ O. However ,  this is somewhat  unsatisfactory since we would like the f reedom to 
ignore the afterbody. We shall argue that the infinite pressure for T(a) = 0 is an artefact of 
our  model  which can be eliminated by a bet ter  local analysis. 

First, observe that it appears  that slender body theory requires continuity of T"(x) for 
finite pressure whereas thin aerofoil theory only requires the continuity of S'(x). The latter is 
not unreasonable  since a discontinuity in slope leads to a stagnation point or a point of 
infinite velocity and hence pressures which are not close to the pressure at infinity. This 
manifests itself in thin aerofoil theory as an infinite pressure at points of discontinuous 
gradient.  This would also be expected to be true for a slender b o d y - d i s c o n t i n u o u s  area 
gradient  should also lead to infinite pressure locally. However ,  for an axisymmetric body 
with continuous area gradient the flow is evidently locally two-dimensional (on a scale small 
compared  with the radius of the body) and should therefore have finite pressure. Our  first 
conclusion is thus that the simple slender body theory used here breaks down near  
discontinuities of T"(x). However ,  if T(a)= 0 we must still have T"(a)= 0 otherwise the 
closure will be at best conical, and the pressure locally infinite. 

Recall the analogous situation for a two-dimensional He lmhol tz -Ki rchhof f  flow. A thin 
aerofoil  type of approximation for such a model cannot guarantee cusped c l o s u r e -  in fact 
the separating streamline generally reattaches normally. However  this does not discredit the 
constant  pressure model  since it is well known that there are O(1) geometr ies  which do 
permit  cusped closure (e.g. the well known Lighthill cavity (Lighthill (1945)). The real 
reason that constant pressure models are inadequate (apart f rom giving poor  agreement  with 
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exper iment)  is that they cannot be both cusped and c o n v e x -  the latter being a requirement  
that the pressure must be increasing away from the cavity. Fortunately,  for our problem, we 
know that there exist two-dimensional O(1) geometry Sadovskii vortices which have all the 
local and global properties we require and, as mentioned in the introduction, we expect 
similar confined vorticity flows to exist in three dimensions. Such a vortex would then be the 
local behaviour  for our cavity near x = a in the case T(a)  = 0. Thus if we were to choose 
T(a )  = 0 then we could improve our model by a more careful local analysis near x = a and 
by employing a more sophisticated slender body theory (see Handelsman & Keller (1967)). 
We shall not pursue this point further here. 

4. T h e  l imi t  log e - *  -oo  

It is of interest to examine the solution to the governing equations in the case log e--~ -oo 
since further  analysis is then possible. Otherwise the solution of (5) may only be obtained by 
numerical means. (See Fitt & Wilmott (1992).) Note that we expect qualitatively similar 
results for the two cases where log e is finite and where log e---~-oo. We also find that 
qualitative comparison is possible between the log e--~-o0 limit and the two dimensional 
solution. 

Making the obvious scalings 

U(x) 
T(x) - - l o g  e ' /3 - y  log e , 

the leading order  problem becomes 

~ [ U  ( 1 ) -  U2(x)] 
( O ~ x ~ l )  
( l~<x~< ~) ' 

A t x = O w e  have 

T ( 0 ) -  eZL2 

and so 

~'n~ 
U(0) = - ( l o g  e) e2L2 - D, , 

which we assume to be 0 (1 ) .  (Hence our insistence that H1/L is of algebraic order e; it must 
actually be O ( e / ( - l o g  e)1/2).) We shall also insist that U ' (O)=  U ' ( a ) = 0  and U(a)= D e. 
Thus 

2 
"~'X 

U(x) = D, 2 (O<-x <<- 1) ,  

and for l ~ x ~ a  

f V(x) d~ 

JD: g - - P s  c3 + Qs c + R 
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where  

/ '  - 3" - -  R = 2 ~ - w ( , ~ )  - ~ w ( ] ) ~ w ( ~ )  . 12"n" ' Q = -2~"  + 3'2U(1)24~r ' U )3 

Cont inu i ty  of  U(x) at x = 1 then gives us the following relationship be tween a ,  3', Dr and D 2 

o1-,,/2 ds c 
O~--1 z 

JD2 V - P ~  3 + Q@ + R 

Cont inu i ty  of  U'(x) at x = 1 then leads to 

D 2  - D1  g 2  D 2 ( D ,  - . / 2 )  ~ - ~ D ~  - 3 ~D~ - ~ / 2 )  3 

This latter equa t ion  is identical to that  given by the first consis tency condi t ion (9). The  

impor t an t  points  to note  about  the log e---~ - ~  limit concern  the role of  the integral in (5) 

and the behaviour  near  the end points  of  the cavity, and the dimensionali ty.  

First,  we saw in section 3.3 how the solution to the full integral equa t ion  (5) has 

T"(O) = T"(a) = 0. We identified the decay of  T"(x) at the two ends to be ei ther  x "  for some 
/z > 0 or  ( - l o g  X) -1/2. In  the fo rmer  case the balance of  terms was be tween  the integral  and 

cons tan t  terms,  in the latter there  was a balance between the integral and T" log  x. This 

subtle behav iour  has been  lost in the log e----~-~ limit since both  the integral and the 

T" log x te rm have been  discarded by dint of  being small compared  with the T" log e term. 

- 0 . 5 '  

- I  

-2  

-,3 

0 , 5  I .0' 2 ,5 '  

® 

Fig. 3a. The pressure profile in the case log e---~-~ with D] =5 and 02=0. (a =2.4741.) (Inset: A typical 
pressure profile for flow down a step, experimental and theoretical (O'Malley et al. 1991).) 
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As  a consequence  we see that  our  solution for  U(x) does not  have U"(x)= 0 at the ends of  

the cavity. H e n c e  the pressure outside the cavity, along the x-axis, becomes  infinite at 

x = 0, a .  H o w e v e r ,  this is only infinite as far as the pressure away f rom the two ends is 

conce rned ;  a local analysis would  show that  the O ( - 1 / l o g  e) ou ter  pressure matches  with an 

O(1 )  inter ior  pressure.  
Secondly ,  ou r  example  illustrates the dimensional i ty  of  the full p rob lem since there  are 

four  physical  pa ramete r s  a ,  D I, 3' and D 2 (which can be identified as cavity length,  width,  

vort ici ty and a f te rbody  height)  with two relat ionships be tween  them.  This suggests t h e  

d imensional i ty  of  the equa t ion  (5) toge ther  with its bounda ry  condit ions is three  since log e 

does  not  scale out  of  (5). 
Since we cannot  have U"(a) = 0 with the log e---~ - ~  limit we may as well consider  as an 

example  the simplest case D 2 = 0, that  is, there  is no af terbody.  
In  Figs 3(a), (b) and (c) we plot the pressure,  the scaled cross-sectional  area U(x) ~/2 and 

the cavity width U(x) for  D 1 = 5 and D 2 = 0. In this case we find that  a = 2.4741. In Fig. 3a 

the pressure  is shown as zero  for  x outside [0, a ] ,  of  course,  the above  analysis shows it to be 

5 

4" 

3" 

2' 

I 

-0o5" 0.5' 1.0 I.S" 2.0" 2.5" 

Fig. 3b. Cavity cross-sectional area for the limit log e- -*-2  with D 1 = 5 and D 2 = 0. 
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Fig. 3c. C a v i t y  w i d t h  f o r  t he  l imi t  log  e - - - -~-~  wi th  D I = 5 a n d  D_, = 0. 
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O(-1 / log  e). Inset in Fig. 3(a) is an example of results from the two-dimensional problem 
(O'Malley et al.). Note that the log e---~-w limit and the two-dimensional model show 
qualitative agreement - the pressure reaches its maximum value at the point of reattachment 
for example. 

5. Conclusions 

In this paper we have presented a new model for separated axisymmetric flow past a slender 
obstacle. This model is a composite of the classical Helmholtz-Kirchhoff and Prandtl- 
Batchelor models. It is an extension of the two-dimensional model for flow down a step 
presented by O'Malley et al. (1991). Indeed, because of the lack of experimental results for 
incompressible, axisymmetric and slender inviscid flows, the success of the two-dimensional 
model is the main justification for its extension to a new geometry. 

We derive an integro-differential equation for the cross-sectional area of the cavity which 
is then analysed. Our problem contains three free parameters. For example, we could decide 
to choose (on the basis of some experimental results, say) to prescribe the cavity area where 
it joins the obstacle, the non-dimensional base pressure perturbation (from that at infinity) 
and the height of the equivalent afterbody. The total length of the cavity and the strength 
and the length of the recirculating region can, in principle, then be determined. With an 
afterbody present, we have shown that our model has cusped closure at the point of 
reattachment and hence continuity of pressure there. Finally, an explicit solution for the 
cavity shape and pressure distribution has been found by exploiting a large parameter in the 
integral equation. 

The numerical solution of the integral equation can be found in a companion paper (Fitt & 
Wilmott (1992)). Future work will also address the question of the existence of an 
axisymmetric version of the Sadovskii vortex with an O(1) geometry. 
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